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'GRBs are one of the leading candidates for the source of the highest energy
cosmic rays. Protons accelerated along with the electrons in GRB would
interact with the ambient photon field producing A resonances. Neutrinos are .
produced in the decay chain of the A particle, and their detection would be
definitive evidence for proton acceleration in the GRB fireball. With no
neutrino candidates found in 2 years of data, neutrino flux upper limits from 3 | | o
: : 1km*-scale neutrino detector in the Antarctic ice
GRBs are found, and these results interpreted in terms of GRBs as the source -Construction finished in December. 2010

of the highest energy cosmic rays. -Cherenkov light from secondary charged particles is
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GRB Neutrino Searches in IceCube

Constraints on GRB fireballs

lceCube performs two independent searches for neutrinos with strong spatial and temporal * Two modeled
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correlation with reported GRB positions [2]. Candidate event energies are considered for 72’ E Togion (his resut) variables, the average
additional rejection of the irreducible atmospheric neutrino background. E |1 Gyeasices fireball bulk Lorentz
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* Designed to search for neutrinos promptly * Search for any neutrino emission from GRB in é A0 e . =g oesmeena electrons ¢, / ¢, were
produced in coincidence with the gamma rays expanding time window about GRB trigger, £10 s | " varied yielding allowed
* Utilizes an unbinned maximum likelihood search  seconds to +1 day. é i regions for this result
to differentiate signal from irreducible * Perform minimal cuts to reconstructed events, = i and sensitivity for 3yr
background use a weighted analysis[3], giving higher weights 5 i : of data from |C86
* Optimized to high energy neutrino spectrum to strong neutrino candidates = 5300 350 400 450 500 550 600 650 700
modeled by py interactions|5,6] » Optimized for more generic E* neutrino - - BullcborentzFactor(ty |
spectrum » Decreasing the energy deposited in protons ¢ / ¢, directly

decreases the neutrino flux.

* Anincrease in I leads to an increase of the proton energy
threshold for pion production in the observer frame reducing the
neutrino flux.

Model Dependent Search Results
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©) Full analysis details available here [7] significantly different from what is included in current models.
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